
3460:4/526 Lab 3: A Simple File System Page 1

O.S. Lab 3: A Simple File System

In order to access a file stored on a disk you have to know its location and sectors used. For user

convenience we prefer to have the o.s. track this information so the user can simply refer to files by name.

This is the purpose of a file system; to match a file name with its location and footprint on the disk. File

systems greatly vary in complexity so our purpose is to work with a very simple one.

Along with this lab writeup are two files, floppya.img and filesys.c. The first of these is a simulated 3½”

1.44Mb floppy disk formatted with our file system and including a couple of application programs. The

second is a starter file for the program you will write to manipulate the files stored on the disk.

Introduction to the File System
The primary purpose of a file system is to keep a record of the names and sectors of files on the disk. The

file system in this operating system is managed by two sectors toward the beginning of the disk. The disk

map sits at sector 256, and the disk directory sits at sector 257.

Run the command hexdump -C floppya.img and note the following output toward the bottom:

Map



Dir

…

*

00020000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 00 |................|

00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00020200 63 61 6c 00 00 00 00 00 78 01 03 00 00 00 00 00 |cal.....x.......|

00020210 66 69 62 00 00 00 00 00 78 04 01 00 00 00 00 00 |fib.....x.......|

00020220 6d 73 67 00 00 00 00 00 74 05 01 00 00 00 00 00 |msg.....t.......|

00020230 74 33 00 00 00 00 00 00 78 06 09 00 00 00 00 00 |t3......x.......|

00020240 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00168000

…

We’re displaying the contents of the disk as though it were one big file. The far-left column is the starting

address of the subsequent 16-byte quantity. Each byte’s contents is displayed in hex, then in ASCII on the

far right.

The map (starting at 0x20000) tells which sectors are available and which sectors are currently used by

files. This makes it easy to find a free sector when writing a file. Each sector on the disk is represented by

one byte in the map. A byte entry of -1 (0xFF) means that the sector is used. A byte entry of 0 (0x00)

means that the sector is free. In this example sectors 0 through 14 are in use by miscellaneous files

including the boot loader (sector 0). Sectors 15 through 511 are free.

3460:4/526 Lab 3: A Simple File System Page 2

The directory (starting at 0x20200) lists the names and locations of files stored on the disk. There are 32

file entries in the directory, each of which contains 16 bytes (32 × 16 = 512, which is the storage capacity

of a sector). The first eight bytes of each directory entry is the file name. (This is an historic hold-over;

MSDOS file names followed an 8-dot-3 pattern.) The next byte indicates file type: “t” for a

text/printable/viewable file, “x” for an executable binary. The two bytes after that are the starting position

and number of sectors, respectively, which tell where the file is on the disk (per our choice of contiguous

allocation of files for simplicity). If the first byte of the entry is zero (0x0), then there is no file at that entry.

Consider the boldfaced directory entries in our disk image. These indicate that there are valid files (with

legal names indicated by the visible hex characters) at sectors 1, 4, 5 and 6. (Zero is not a valid sector

number but a filler since every entry must be 16 bytes). If a file name is less than eight bytes, the remainder

of the first eight bytes should be padded out with zeros. You should note, by the way, that this file system

is very restrictive. Since one byte represents a sector, there can be no more than 512 sectors used on the

disk (256K of storage). It’s likely worse than this since any file’s initial sector must lie in the first 256 of

these 512 sectors. Additionally, since a file can have no

more than 255 sectors, file sizes are limited to this 128K.

We can expand the amount of useable storage by using

multiple sectors for the map and directory, but for this

project this is adequate storage. For a modern

operating system, this would be grossly inadequate.

The filesys.c Program
Included with this lab is the filesys.c starter file. All it

does now is open the disk image, read the map and

directory sectors into arrays, print the information (in

the format as seen at right), write the two sectors back

to the disk image (in code which is commented out) and

close the disk. This program will provide the starting

point for this lab. Most of what you will need to do in

this lab can be figured out by reverse engineering this

starter file.

Disk usage map:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0x0_ X X X X X X X X X X X X X X X .

0x1_

0x2_

0x3_

0x4_

0x5_

0x6_

0x7_

0x8_

0x9_

0xA_

0xB_

0xC_

0xD_

0xE_

0xF_

Disk directory:

Name Type Start Length

cal exec 1 1536 bytes

fib exec 4 512 bytes

msg text 5 512 bytes

t3 exec 6 4608 bytes

Overview of the Lab
The purpose of this lab is to turn filesys.c into a simple tool for manipulating the files stored on the

provided disk. It will accept options from the Linux command line and alter the disk accordingly. In short,

once compiled (gcc -o filesys filesys.c) you will implement these four commands:

• ./filesys D filename delete the named file from the disk

• ./filesys L list the files on the disk

• ./filesys M filename create a text file and store it to disk

3460:4/526 Lab 3: A Simple File System Page 3

• ./filesys P filename read the named file and print it to screen

Any other option yields an error message. Let us review each of these in turn.

Option L: List files
Tweak the existing code to get rid of the disk map and list the files so that the names print out in the

traditional MSDOS 8-dot-3 format (cal.x, msg.t, etc.) without spaces in the middle. Also remove the

starting sectors, keep only a list of file names and bytes used. Finally, by the way we designed the file

system, a total of 511 sectors (or 511 x 512 = 261,632 bytes) is being tracked. At the end of the list of files,

print out the total space used by the files and the total free space remaining, both in terms of the number

of bytes.

Option P: Print file
Start with the disk directory and map loaded as in the current program. Do the following:

1. Go through the directory trying to match the file name (without “t” or “x” extension). If you don’t find

it, return with a “file not found” error. If you do find it but it’s an executable file and not printable

return with an error message.

2. Using the starting sector number and sector count in the directory, load the file into a new buffer of

size 12288 (our max file size) via fseek and fgetc as shown in the starter file.

3. Starting from index zero print each individual character until you run into a zero (the end-of-file

delimiter). Return.

This is easy to test given the four files on the disk image, only one of which (msg) should be viewable. Also

remember to test the “file not found” error.

Option M: Create and store a text file
Prompt the user for a string of text and create a 1-sector (512 byte) file storing it. Writing a file means

finding a free directory entry and setting it up, finding free space on the disk for the file, and setting the

appropriate map byte(s). Your function should do the following:

1. Search through the directory, doing two things simultaneously:

a. If you find the file name already exists, terminate with a “duplicate or invalid file name” error.

b. Otherwise find and note a free directory entry (one that begins with zero).

2. Copy the name to that directory entry. If the name is shorter than 8 characters, fill in the remaining

bytes with zeros. If the name is longer than 8 characters keep only the first 8. Include the “t” file type

at the ninth location in the entry.

3. To write the actual file to disk:

a. Find a free sector on the disk by searching through the map for a zero.

b. Set its map entry to 255.

3460:4/526 Lab 3: A Simple File System Page 4

c. Add the starting sector number and length (1) to the file's directory entry.

d. Write the buffer holding the file to the correct sector.

4. Write the map and directory sectors back to the disk.

If there are no free directory entries or not enough free sectors left, your function should terminate with

an “insufficient disk space” error. Testing should be obvious (create a file and try printing it out) but

remember the error cases.

Function D: Delete file
Deleting a file takes two steps. First, you need to change all the sectors reserved for the file in the disk

map to free. Second, you need to set the first byte in the file's directory entry to zero.

Your function should find the file in the directory and delete it if it exists. To accomplish this, do the

following:

1. Search through the directory and try to find the file name. If you can’t find it terminate with a “file not

found” error.

2. Set the first byte of the file name to zero.

3. Based on the starting sector and file length, step through the sectors numbers listed as belonging to

the file. For each sector, set the corresponding map byte to zero. For example, if sector 7 belongs to

the file, set the eighth map byte to zero (index 7, since the map starts at sector 0).

4. Write the character arrays holding the directory and map back to their appropriate sectors.

Notice that this does not actually delete the file from the disk. It just makes the disk space used by the

file available to be overwritten by something else. This is typically done in operating systems; it makes

deletion fast and un-deletion possible. Test as above: create a file and then delete it, followed by a check

of the hexdump.

Conclusion
There are a lot of other things a file system has to do (like copying files) but this should give you an idea

of what’s involved in making a file system work in an o.s.. When finished submit your revised filesys.c

program to the drop box.

Last updated 11.4.2020 by T. O’Neil.

